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Abstract 
A relativistic electron beam undergoes undulating 

motion due to its image charge wakefields while passing 
close to a conducting grating surface. A new device, an 
image charge undulator, has been proposed recently [1] to 
utilize this mechanism for generating coherent hard 
radiation. We demonstrate the physics principle of this 
device by a 2D model of a uniform sheet beam. The 
transverse image charge wakefields, synchrotron radiation 
frequency and coherent radiation gain length are 
presented. We discuss a proof-of-principle experiment that 
takes into consideration such technical issues as grating 
fabrication, flat beams and beam alignment. 

1  INTRODUCTION 
A relativistic electron beam passing near a metal 

surface generates an electric polarization (image charges) 
of the surface, which applies a Lorentz force (image 
charge wakefields) back on the beam. These wakefields 
become wiggler type fields when the metal surface is a 
grating. The electron beam undergoes undulating motion 
due to these wakefields and emits/amplifies radiation just 
as in a conventional magnetic undulator. To enhance 
wakefields and also to stabilize the electron beam, we 
close the single grating by a second identical surface 
shown in Fig. 1. Such an asymmetric periodic structure is 
named an image charge undulator (ICU).  

 
 
 
 
 
 
 

 
 
Figure 1.  Schematic drawing of image charge undulator. 

 
Let us consider a uniform sheet beam (surface charge 

density σ0) in an infinitely long planar undulator as shown 
in Fig. 1. In this case, the alternating component of 
magnetic field vanishes, while the alternating electric 
field coincides with electrostatic solution for a charged 
sheet of the same density. The transverse image charge 
wakefields (defined as the total field minus the field of the 
source charges) have the following general form 
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to reflect periodicity in the longitudinal direction, where 
ϕxn are phases, kw=2π/λw, and λw is the period of the 

structure.  Due to the linearity of Maxwell equations, 
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for all n, where 00 2πσ=E  is the static electric field of a 
uniform sheet charge in free space. This relation implies 
that the image charge wakefields are always proportional 
to the surface charge density of the sheet beam, i.e., total 
charge and dimensions of a flat bunch.  

Normally, higher harmonic terms in Eq. (1) decay very 
fast so the wakefields are dominated by the first several 
nonzero terms. Keeping only the first term in Eq. (1), we 
obtain from the electron equation of motion that 
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where γ is the Lorentz factor, and )0()( 11 xx ExE ≈  because x 
is very small for high energy electrons. This result shows 
that electrons indeed undergo undulating motion and 
therefore emit/amplify radiation in a way similar to a 
conventional magnetic undulator. According to the 
synchrotron radiation theory, the resonance frequency of 
this planar undulator is 
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2  A SIMPLE 2D MODEL  
The 2D model of ICU shown in Fig. 2 can be viewed as 

a 2D waveguide (vertical size 2D) attached by two sets of 
identical 2D rectangular cavities (width L and depth d). 
Cavities are uniformly distributed along the z-axis. The 
period of this ICU is 2L. Both waveguide and cavities are 
made of perfectly conducting material. A uniform sheet 
beam (of zero thickness) passes through the center of the 
ICU. In Ref. 1, we have shown analytically the transverse 
image charge wakefield at the center of the ICU is  
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The dimensionless coefficients 
12 +nxN  depend only on the 

ICU geometry (i.e., ratios d/L and D/L), not on parameters 
of the flat beam, and are given as follows 
           

L
Dnn

L
dna

N
n

nx

ππ

π

)12sinh(
2
1

)12tanh(~

12

+





 +

+
−=+

       (6) 

na~ in Eq. (6) can be solved from linear equations 
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are elements of coupling matrices between two eigen 
modes of cavities on the same or opposite sides of the 
waveguide, and 
     [ ] [ ]

2222 )12(
11)(~,

)12(
11)(~

ρπ
ρ

ρ
ρ

π
ρ

ρρ

−+
+=

−+
+=

+−

n
eI

n
eiI

i

sn

i

cn
         (10) 

Further, one can use the following relation 
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to simplify Eq. (8) and (9). 
It should be noted that we have used here a slightly 

simplified notation from Ref. 1, and have used a tilde on 
all new variables to denote this difference. 

 
 
 
 
 
 
 
 

 
Figure 2.  2D Image charge undulator made of  

2D waveguide and 2D rectangular cavity. 

3  ASYMPTOTIC BEHAVIOR  
Calculating matrix elements 

nmΓ~ and 
nmΛ~ , and then 

solving linear equations (7) to find na~  normally require 
numerical computations. However, it is useful for gaining 
physics insight to develop an asymptotic formula for 

12 +nxN . Considering the fact that na~ are slowly varying 
numbers in order of one, then 
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In particular, for the first nonzero term, n=0,  

L
D

L
dN x ππ

π
sinh/tanh2~1 −    (13) 

This leads to  
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Both Eq. (14) and (17) are well expected since the 
transverse wakefields vanish when either the cavity depth 
reduces to zero so the structure becomes symmetric or 
two gratings are placed too far away. On the other hand, 
the transverse wakefields reach plateau values as shown 
in Eq. (15) when the cavity depth is much larger than the 
undulator period. The wakefields are dominated by the 

image charges of the nearest metal surface, and since the 
image charges on the other surface are much farther they 
can be neglected. Eq. (16) displays a direct inversely 
proportional relationship between the wakefields and 
vertical size of the waveguide, i.e., one can increase 
wakefields by reducing the distance between two gratings.  

4  A NUMERICAL EXAMPLE  
We now present numerical calculations of undulating 

motion for a flat electron beam of 250 MeV energy in an 
ICU of 50 µm period using the analytical formulas in 
section 2. The flat bunch is 100 µm long, 100 µm wide 
and 4 µm thick, and contains 6⋅1010 electrons (total charge 
is about 10 nC). Since the longitudinal bunch size is twice 
the ICU period, the assumption of infinitely long sheet 
beam in the 2D model is only an approximation. We 
should expect certain deviations from the theoretical 
model. Other ICU dimensions, i.e., grating tooth depth d 
and separation of two gratings 2D, are parameters of 
numerical calculations, and their values typically are 
equal or close to the grating period λw. Matrices 

nmΓ~ and 

nmΛ~ in Eq. (7) are truncated to 100 by 100, and we use the 
Gaussian elimination method to solve Eq. (7).  
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Figure 3.  The first two ICU geometry dependent 

factors as functions of d/L, when D/L=1. 
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Figure 4.  The first two ICU geometry dependent  

factors as functions of d/L, when D/L=0.5. 
 
The geometric factors Nx 2n+1, as well as the wakefields, 

are sensitive functions of ratios D/L and d/L, as shown in 
Figs. (3-5). The wakefields quickly reach plateau values 
when d is larger than L, while on the other hand, they can 
go very high when the two gratings are very close. These 
behaviors confirm the asymptotical formulas of the 
previous section. The separation of two gratings is limited 
by flat beam emittance and alignment, and at the present 



time, D≈0.5L≈12.5 µm is a challenging but still reachable 
value.  

 

Figure 5.  The first three ICU wakefield numerical 
factors as functions of D/L, when d/L=1. 

 
To provide a direct and quantitative comparison 

between an ICU and a conventional magnetic undulator, 
we define an equivalent magnetic field derived from the 
Lorentz force formula 

cEB xeqv /)0(1=    (18) 
This magnetic field would produce the same strength 
Lorentz force as the image charge wakefields. It is plotted 
in Fig. 6 as a function of D/L while d/L=1. The values are 
very significant, and can be as high as 35 T for D=12.5 
µm, a value unreachable by conventional undulators or 
wigglers of current technologies.  
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Figure 6.  Equivalent magnetic field as a function 

of D/L, when d/L=1  
 

Fig. 7 shows the undulator parameter K, ranged from 
0.03 to 1.2. The gain length [2] of a FEL process is 
plotted in Fig. 8. Its range is from 0.3 to 3.4 cm depending 
on the separation between two gratings. This points to a 
very promising large radiation gain and even possible 
saturation in an ICU of less than 1 m in length. 
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Figure 7.  Undulator parameter K as a function 
of D/L, when d/L=1. 
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Figure 8.  Gain length as a function of D/L, when d/L=1. 

5 PROPOSED PROOF-OF-PRINCIPLE 
EXPERIMENT  

The concept of ICU can be experimentally verified in a 
straightforward manner. First produce a flat beam with the 
required characteristics, then send the beam between 
properly machined and positioned flat plates, and finally 
monitor the resulting radiation downstream.  

Flat beams of a very small x-emittance (0.01 µm, norm, 
or less) can be obtained from electron guns with the 
cathode immersed in a solenoid field. After acceleration to 
the energy range of tens of MeV, the electron beam can be 
ejected from the solenoid and transformed to a flat area, 
applying the vortex-plane beam adapters [3]. The y-
emittance then becomes correspondingly large since the 
geometrical mean of the two emittances is equal to the 
beam normalized emittance at the cathode. See also [4]. 

The flat beam is then sent through a beam line cross 
fitted with standard, remotely controlled, linear motors 
with alignment guides all in the vacuum. Metallic plates, 
machined with the desired periodic surface ridges, can be 
mounted on the motors. (Commercially available 
machining techniques can cut grating ridges down to as 
small as 10 µm.) The plates face each other. Temperature 
stabilization can be added to back sides of the plates and 
the e-beam can be pulsed to control induced heating. 

Initially, the separation between plates is large so the 
electron beam can be tuned without striking either plate. 
When the beam is aligned, the plates are moved towards 
each other in pre-determined steps. Photon radiation can 
be monitored downstream as a function of plate 
separation.  

6  CONCLUSIONS 
A new device, image charge undulator, has been 

theoretically examined as a potential source for hard 
radiation with an uncomplicated device. A straightforward 
experiment is proposed to verify these studies. 
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